Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We introduce and study a new family of tensor tomography problems. At rank 2 it corresponds to linearization of travel time of elastic waves, measured for all polarizations. We provide a kernel characterization for ranks up to 2. The kernels consist of potential tensors, but in an unusual sense: the associated differential operators have degree 2 instead of the familiar 1. The proofs are based on Fourier analysis, Helmholtz decompositions, and cohomology.more » « less
-
Abstract We prove that the reconstruction of a certain type of length spaces from their travel time data on a closed subset is Lipschitz stable. The travel time data is the set of distance functions from the entire space, measured on the chosen closed subset. The case of a Riemannian manifold with boundary with the boundary as the measurement set appears is a classical geometric inverse problem arising from Gel’fand’s inverse boundary spectral problem. Examples of spaces satisfying our assumptions include some non-simple Riemannian manifolds, Euclidean domains with non-trivial topology, and metric trees.more » « less
-
We study an inverse problem of determining a time-dependent potential appearing in the wave equation on conformally transversally anisotropic manifolds of dimension three or higher. These are compact Riemannian manifolds with boundary that are conformally embedded in a product of the real line and a transversal manifold. Under the assumption of the attenuated geodesic ray transform being injective on the transversal manifold, we prove the unique determination of time-dependent potentials from the knowledge of a certain partial Cauchy data set.more » « lessFree, publicly-accessible full text available March 5, 2026
-
Jiaping Wang (Ed.)We provide new proofs based on the Myers–Steenrod theorem to confirm that travel time data, travel time difference data and the broken scattering relations determine a simple Riemannian metric on a disc up to the natural gauge of a boundary fixing diffeomorphism. Our method of the proof leads to a Lipschitz-type stability estimate for the first two data sets in the class of simple metrics.more » « less
-
We study an inverse problem of determining a time-dependent damping coefficient and potential appearing in the wave equation in a compact Riemannian manifold of dimension three or higher. More specifically, we are concerned with the case of conformally transversally anisotropic manifolds, or in other words, compact Riemannian manifolds with boundary conformally embedded in a product of the Euclidean line and a transversal manifold. With an additional assumption of the attenuated geodesic ray transform being injective on the transversal manifold, we prove that the knowledge of a certain partial Cauchy data set determines the time-dependent damping coefficient and potential uniquely.more » « less
-
Abstract Consider the geometric inverse problem: there is a set of delta-sources in spacetime that emit waves travelling at unit speed. If we know all the arrival times at the boundary cylinder of the spacetime, can we reconstruct the space, a Riemannian manifold with boundary? With a finite set of sources we can only hope to get an approximate reconstruction, and we indeed provide a discrete metric approximation to the manifold with explicit data-driven error bounds when the manifold is simple. This is the geometrization of a seismological inverse problem where we measure the arrival times on the surface of waves from an unknown number of unknown interior microseismic events at unknown times. The closeness of two metric spaces with a marked boundary is measured by a labeled Gromov–Hausdorff distance. If measurements are done for infinite time and spatially dense sources, our construction produces the true Riemannian manifold and the finite-time approximations converge to it in the metric sensemore » « less
-
null (Ed.)SUMMARY Dynamic ray tracing is a robust and efficient method for computation of amplitude and phase attributes of the high-frequency Green’s function. A formulation of dynamic ray tracing in Cartesian coordinates was recently extended to higher orders. Extrapolation of traveltime and geometrical spreading was demonstrated to yield significantly higher accuracy—for isotropic as well as anisotropic heterogeneous 3-D models of an elastic medium. This is of value in mapping, modelling and imaging, where kernel operations are based on extrapolation or interpolation of Green’s function attributes to densely sampled 3-D grids. We introduce higher-order dynamic ray tracing in ray-centred coordinates, which has certain advantages: (1) such coordinates fit naturally with wave propagation; (2) they lead to a reduction of the number of ordinary differential equations; (3) the initial conditions are simple and intuitive and (4) numerical errors due to redundancies are less likely to influence the computation of the Green’s function attributes. In a 3-D numerical example, we demonstrate that paraxial extrapolation based on higher-order dynamic ray tracing in ray-centred coordinates yields results highly consistent with those obtained using Cartesian coordinates. Furthermore, in a 2-D example we show that interpolation of dynamic ray tracing quantities along a wavefront can be done with much better consistency in ray-centred coordinates than in Cartesian coordinates. In both examples we measure consistency by means of constraints on the dynamic ray tracing quantities in the 3-D position space and in the 6-D phase space.more » « less
-
null (Ed.)SUMMARY Within the field of seismic modelling in anisotropic media, dynamic ray tracing is a powerful technique for computation of amplitude and phase properties of the high-frequency Green’s function. Dynamic ray tracing is based on solving a system of Hamilton–Jacobi perturbation equations, which may be expressed in different 3-D coordinate systems. We consider two particular coordinate systems; a Cartesian coordinate system with a fixed origin and a curvilinear ray-centred coordinate system associated with a reference ray. For each system we form the corresponding 6-D phase spaces, which encapsulate six degrees of freedom in the variation of position and momentum. The formulation of (conventional) dynamic ray tracing in ray-centred coordinates is based on specific knowledge of the first-order transformation between Cartesian and ray-centred phase-space perturbations. Such transformation can also be used for defining initial conditions for dynamic ray tracing in Cartesian coordinates and for obtaining the coefficients involved in two-point traveltime extrapolation. As a step towards extending dynamic ray tracing in ray-centred coordinates to higher orders we establish detailed information about the higher-order properties of the transformation between the Cartesian and ray-centred phase-space perturbations. By numerical examples, we (1) visualize the validity limits of the ray-centred coordinate system, (2) demonstrate the transformation of higher-order derivatives of traveltime from Cartesian to ray-centred coordinates and (3) address the stability of function value and derivatives of volumetric parameters in a higher-order representation of the subsurface model.more » « less
-
We prove that the boundary distance map of a smooth compact Finsler manifold with smooth boundary determines its topological and differential structures. We construct the optimal fiberwise open subset of its tangent bundle and show that the boundary distance map determines the Finsler function in this set but not in its exterior. If the Finsler function is fiberwise real analytic, it is determined uniquely. We also discuss the smoothness of the distance function between interior and boundary points.more » « less
An official website of the United States government
